Unique Paths II
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
Notice: m and n will be at most 100.
Notes:
- Coordinate DP
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
if (obstacleGrid == null || obstacleGrid.length == 0
|| obstacleGrid[0] == null || obstacleGrid[0].length == 0) {
return 0;
}
int m = obstacleGrid.length;
int n = obstacleGrid[0].length;
// state
int[][] f = new int[m][n];
// initialize
if (obstacleGrid[0][0] == 1) {
return 0;
}
f[0][0] = 1;
for (int i = 1; i < m; ++i) {
if (f[i-1][0] == 1 && obstacleGrid[i][0] == 0) {
f[i][0] = 1;
} else {
f[i][0] = 0;
}
}
for (int i = 1; i < n; ++i) {
if (f[0][i-1] == 1 && obstacleGrid[0][i] == 0) {
f[0][i] = 1;
} else {
f[0][i] = 0;
}
}
// function
for (int i = 1; i < m; ++i) {
for (int j = 1; j < n; ++j) {
f[i][j] = obstacleGrid[i][j] == 1 ? 0 : f[i][j-1] + f[i-1][j];
}
}
// answer
return f[m-1][n-1];
}