Triangle
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
Notes:
- Traverse from top to bottom: f[i][j] = Math.min(f[i-1][j], f[i-1][j-1]) + triangle[i][j];
- Traverse from bottom to top, could use rolling array to save space: f[j] = Math.min(f[j], f[j+1]) + + triangle[i][j]. No overlap between two computations, so could use rolling array.
- The initialize and answer are different for these two methods
- Divide and conquer + memorized search: search(i, j) = Math.min(search(i+1, j), search(i+1, j+1)) + triangle[i][j].
public int minimumTotal(List<List<Integer>> triangle) {
if (triangle == null) {
return -1;
}
int n = triangle.size();
// state
int[][] f = new int[n][n];
// initialize
f[0][0] = triangle.get(0).get(0);
// function
for (int i = 1; i < n; i++) {
f[i][0] = f[i-1][0] + triangle.get(i).get(0);
for (int j = 1; j < i; j++) {
f[i][j] = Math.min(f[i-1][j], f[i-1][j-1]) + triangle.get(i).get(j);
}
f[i][i] = f[i-1][i-1] + triangle.get(i).get(i);
}
int sum = Integer.MAX_VALUE;
for (int i = 0; i < n; i++) {
sum = Math.min(sum, f[n-1][i]);
}
// answer
return sum;
}
public int minimumTotal(List<List<Integer>> triangle) {
if (triangle == null) {
return -1;
}
int n = triangle.size();
// state
int[] f = new int[n];
// initialize
for(int i = 0; i < n; ++i) {
f[i] = triangle.get(n-1).get(i);
}
// function
for (int i = n-2; i >= 0; --i) {
for (int j = 0; j <= i; j++) {
f[j] = Math.min(f[j], f[j+1]) + triangle.get(i).get(j);
}
}
// answer
return f[0];
}
private int search(int[][] triangle, int[][] minSum, int x, int y) {
int n = triangle.length;
if (x >= n) {
return 0;
}
if (minSum[x][y] != Integer.MAX_VALUE) {
return minSum[x][y];
}
minSum[x][y] = Math.min(search(x + 1, y), search(x + 1, y + 1))
+ triangle[x][y];
return minSum[x][y];
}
public int minimumTotal(int[][] triangle) {
if (triangle == null || triangle.length == 0) {
return -1;
}
if (triangle[0] == null || triangle[0].length == 0) {
return -1;
}
this.n = triangle.length;
this.triangle = triangle;
this.minSum = new int[n][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
minSum[i][j] = Integer.MAX_VALUE;
}
}
return search(0, 0);
}